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Coexistence of large amplitude stationary structures in a model of reaction-diffusion system

Andrzej L. Kawczyński and Bartłomiej Legawiec
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland

~Received 5 May 2000; published 25 January 2001!

The two-variable reaction-diffusion model of a chemical system describing the spatiotemporal evolution to
large amplitude stationary periodical structures in a one-dimensional open, continuous-flow, unstirred reactor is
investigated. Numerical solutions show that the structures are generated by divisions of the traveling impulse
and its stopping at the boundary of the system. Analyses of projections of numerical solutions on the phase
plane of two variables elaborated in the present paper allow qualitative explanation of the results. The coex-
istence of the large amplitude stationary periodical structures is shown. A number of coexisting structures
grows strongly with increasing length of the reactor and may be as large as one wishes. The relationship of
these results to biological systems is stressed.
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I. INTRODUCTION

Since the pioneering work by Turing@1# it has become
clear that minimal models that were able to describe the
tern formation in biological systems might be based
reaction-diffusion equations. This result stimulated searc
of patterns in chemical systems@2#. In the 1970s so-called
target patterns@3,4# and spiral waves@5,6# have been found
in experiments performed in Petri dishes with thin layers
the Belousov–Zhabotinsky~BZ! reactions@4,7#. These pat-
terns were transient ones, because the experiments were
formed in closed chemical systems. Experimental studie
stationary~asymptotic! patterns require sustained far-from
equilibrium conditions@2#. Such conditions have been cr
ated in an open Couette reactor, which allows the str
increase of effective diffusion coefficients@8#, but extensive
laboratory studies begun in the 1980s when op
continuous-flow, unstirred reactors~CFUR! were constructed
@9#. In CFURs patterns form inside a gel layer with we
defined reagent concentrations at its boundaries. In this
natural convection, which is caused by concentration~den-
sity! inhomogeneities, may be eliminated and the behavio
the system is determined by reaction and diffusion proce
only. Sustained nonequilibrium conditions may be ma
tained indefinitely by a continuous refreshment of chemi
reservoirs being in contact with the gel boundaries. Besi
the BZ system, two others ones have been extensively s
ied, namely the chloride-iodide-malonic acid~CIMA ! system
@10# and the ferrocyanide-iodate-sulfite~FIS! reaction@11#.
A kind of observed pattern depends on a geometry of
system and therefore CFURs with various geometries h
been used in experiments. Thin-strip reactors@12,13#, disk
reactors@14,15#, and also CFURs with other geometries ha
been used@16,17#. Patterns observed in one-dimensional
actors may be observed also in two- and three-dimensi
ones but not vice versa. In the one-dimensional Couette
actor besides the traveling front, two kinds of single stea
front, two, and three steady fronts, one, two and three os
lating fronts, simple and complex colliding fronts, burstin
fronts, bursting and oscillating fronts, and alternating bu
ing and colliding fronts have been observed@8#. Experiments
in two-dimensional CFURs have revealed spiral wav
1063-651X/2001/63~2!/021405~12!/$15.00 63 0214
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@18,19#; hexagonal, striped, and rhombic stationary, perio
Turing patterns@12–15,20–23#; repulsive fronts, lamellar
structures, and self-replicating and oscillating spots@24,25#.

Predictions and understanding of these experimental
sults is mainly based on the bifurcation theory. Amplitu
equations derived from the perturbation method allow one
determine stability of assumed solutions. In this way the
pearance of subcritical or supercritical Turing structures
been predicted, as the consequence of instability of homo
neous stationary or oscillating solutions due to infinitesim
spatial disturbances@1,2,26–29#. Analyses of the Ising–
Bloch bifurcation @30#, where a stationary front bifurcate
into two counter propagating fronts in a bistable reactio
diffusion model, have suggested that this bifurcation is
crucial effect in formation of lamellar structures@31–34# and
other patterns@35# observed in the CIMA system@24,25#.

Modeling of real patterns is strongly hindered by the fa
that all chemical systems in which such patterns have b
observed are complex in the sense that many variables~con-
centrations of reagents! must be used in their models. To th
best of our knowledge, there are no theorems which al
one to predict the formation of the patterns in two and m
variables reaction-diffusion systems in one and more spa
dimensions. There are well-known theorems by Ka
@36,37#, Fisher @38#, and Kolmogorov, Petrovsky, an
Piskunov @39#, which define general properties of kinet
terms necessary and sufficient to obtain solutions in the fo
of traveling fronts, but these theorems concern reacti
diffusion systems with one variable only. Therefore mod
ing and predictions of the pattern formation are based ma
on numerical simulations of generic or specially selec
models of reaction-diffusion systems. However, the Ka
theorem or the Fisher and Kolmogorov, Petrovsky, a
Piskunov theorem can be helpful in analyses of models w
many variables provided there is the possibility to separ
different time scales for individual variables. This approa
has been allowed to construct models of target patterns~lead-
ing center @40,41#!, large amplitude stationary periodica
structures @42–45#, oscillating fronts ~chemical pulsar
@46,47#!, bursting fronts~standing waves@48#!, and modu-
lated large amplitude stationary structures@49#. The other
approach based on the construction of stationary structure
©2001 The American Physical Society05-1
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two-variable~activator-inhibitor! systems in an excitable re
gime has also been elaborated@50–53#.

In this paper we present studies of stationary period
structures and therefore it is necessary to stress the differ
between small amplitude stationary periodical Turing str
tures and large amplitude ones. The small amplitude stat
ary periodical structures are generated due to the Turing
stability in which a homogeneous stationary state beco
unstable to spatial disturbances. The large amplitude sta
ary periodical structures are generated in excitable or bist
systems in which homogeneous stationary states rem
stable to small disturbances and the structures may be
erated provided disturbances are sufficiently large. S
structures may also appear in homogeneously oscillating
tems by sufficiently large local disturbance@45#. There are
two main routes of the generation of large amplitude stati
ary periodical structures in one-dimensional reactio
diffusion systems. One of them is the generation of n
pulses of excitation before previously generated pulses@43#.
The other one is the formation of the structures by divis
and the stopping of traveling impulses@44,45,54,55#. These
effects have been used in modeling of stationary period
structures in three-variable reaction-diffusion systems@42–
45#. The third variable is important in these models beca
its spatial distribution controls bifurcations from excitable
bistable regimes. Recently, large amplitude stationary p
odical structures as well as other patterns have been foun
the two-variable reaction-diffusion model for period
boundary conditions@54,55#. These structures have been o
served in the Gray–Scott@56,57# model with three stationary
states, one of them was a stable focus, whereas two o
were unstable~a saddle-point and an unstable focus! with a
sufficiently large difference in diffusion coefficients. The
appear due to division and stopping of a traveling impulse
the difference in diffusion coefficients is not large enoug
then the well-known traveling impulse is observed. The
results have been obtained by numerical solutions and t
explanation is still open. Nevertheless, this is a very imp
tant observation, because it offers new possibilities in m
eling of the patterns. Each pattern observed in then variable
model can be found in the (n11) variable model obtained
by adding one variable. The (n11) variable model usually
has more ample homogeneous dynamics and may exhi
richer variety of spatiotemporal patterns than then variable
one.

In the present paper we describe the formation of la
amplitude stationary periodical structures in a on
dimensional system described by two reaction-diffus
equations. We present also explanations of division and s
ping of traveling impulses. Our analysis is based on qual
tive estimations of reaction and diffusion terms in the kine
equations on a phase plane corresponding to a homogen
system. Like the Gray–Scott model our system has the s
type of three stationary states~stable and unstable foci and
saddle-point!. In the Gray–Scott model nullclines for corre
sponding ordinary differential equations are discontinuo
and therefore the analysis of it is difficult. In our model t
nullclines are continuous and the reaction-diffusion system
easier to analyze. Our model is based on the realistic sch
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of elementary chemical reactions in which dynamics at r
sonable assumptions may be reduced to two variables.

II. MODEL

The model consists of the following elementary, mon
molecular, and bimolecular reactions~excluding autocataly-
sis!:

S0

k21

k1

S, ~1!

S1E

k22

k2

SE, ~2!

SE→
k3

E1P, ~3!

SE1S

k24

k4

S2E, ~4!

P1E

k25

k5

EP, ~5!

P1SE

k25

k5

SEP, ~6!

P1S2E

k25

k5

S2EP, ~7!

P1E8

k26

k6

E8P, ~8!

E8P→
k7

E81R, ~9!

P→
k8

Q. ~10!

We assume thatS0 is a reservoir variable, whose conce
tration is maintained constant. Alternatively, steps~1! may
5-2
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COEXISTENCE OF LARGE AMPLITUDE STATIONARY . . . PHYSICAL REVIEW E63 021405
be treated as inflow/outflow terms in a continuously stirr
tank reactor~CSTR!. The reactant S is transformed to th
product P with E as the catalyst@steps~2! and~3!#. This part
of the scheme is the well-known Langmuir–Hinshelwo
mechanism of a catalytic reaction~or the Michaelis–Menten
kinetics for an enzymatic reaction!. Step~4! is the inhibition
of the Langmuir–Hinshelwood mechanism~or the
Michaelis–Menten scheme! by an excess of the reactantS.
The next three steps present an allosteric inhibition of f
enzyme as well as its complexes with reactant by an ex
of the productP. It is noteworthy that many enzymes a
inhibited by their reactants and products. For simplicity
assume that rate constants in steps~5!–~7! are the same
which is a reasonable assumption for allosteric inhibition
the product. The productP is consumed by another enzy
matic reaction with the enzymeE8 producing inreactive
productR @steps~8! and~9!# and moreover,P is transformed
directly to some productQ in step ~10!. This second enzy-
matic reaction allows simplification of formulas for
nullcline for the product.

According to the mass action law, the behavior of t
system is described by ten kinetic equations forS, P, E, SE,
EP, S2E, SEP, S2EP, E8, andSE8, but it is easy to notice
that E(t)1SE(t)1EP(t)1S2E(t)1S2EP5E0 and E8(t)
1E8P(t)5E08(t) are constant, so the system has two fi
integrals. Therefore one of the variables:E, SE, EP, S2E,
SEP, or S2EP andE8 or SE8 can be calculated if others ar
known and the dynamics of the system is described by e
kinetic equations only. Usually, total concentrations of t
enzymesE0 as well asE08 are much smaller than the conce
er
es
rc
t

d
e
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trations of the reactantS and the productP. In this case one
can separate scales of time, in which the concentration
the reagents change. The variablesE, SE, EP, S2E, SEP,
S2EP, and E8 become fast variables, whereasS and P are
the slow ones. According to the Tikhonov theorem@58#, the
fast variables in a slow time scale are equal to their qua
tationary values and in this scale the dynamics can be
scribed by a reduced system of slow variables. The kin
equations forS andP in dimensionless form are

ds

dt
5A12A2s2

s

~11s1A3s2!~11p!
, ~11!

dp

dt
5BS 2

B1p

Km8 1p
2B2p1

s

~11s1A3s2!~11p!D ,

~12!

wheres5@S#/Km andp5K5@P#, are dimensionless concen
trations of S and P, respectively, andt5(k3@E0#/Km)t is
dimensionless time. The parameters are defined as follo
Km5(k221k3)/k2 , Km8 5(k261k7)/k6 , K55k5 /k25 , A1

5k1@S0#/k3@E0#, A25k2Km /k3@E0#, A35(k4 /k24)Km , B
5KmK5 , B15k7@E08#/k3@E0#K5, andB25k8 /k3@E0#K5.

If Km8 is much smaller thanp the termB1p/(Km8 1p) can
be replaced byB1 and the dynamics ofp is described by

dp

dt
5BS 2B12B2p1

s

~11s1A3s2!~11p! D . ~13!

Nullclines for s andp are given by
p5
s

~11s1A3s2!~A12A2s!
21, ~14!

p5
2~B21B1!1A~B21B1!224B2@B12s/~11s1A3s2!#

2B2
, ~15!
ts
l we
respectively.
These formulas allow for a selection of the paramet

which gives one or three intersection points of the nullclin
Two intersection points correspond to a saddle-node bifu
tion. The intersection points correspond to stationary sta
for the homogeneous system.

We assume that the reactions~1!–~10! occur in an one-
dimensional CFUR. Only the reactantS and productP are
able to diffuse, whereas all other reagents are immobilize
an appropriate gel which also eliminates the natural conv
tion. In this case the time-space behavior of the system
described by two kinetic equations in the form:

]s

]t
2Ds

]2s

]x25A12A2s2
s

~11s1A3s2!~11p!
, ~16!
s
.

a-
es

in
c-
is

]p

]t
2Dp

]2p

]x25BS 2B12B2p1
s

~11s1A3s2!~11p! D ,

~17!

where Ds and Dp are dimensionless diffusion coefficien
andx is the dimensionless space coordinate. In the seque
consider the initial-boundary value~Cauchy! problem with
initial conditions: s(0,x)5sin and p(0,x)5pin in one or
more subintervals of@0,L#, and s(0,x)5sI and p(0,x)5pI
for the complement of@0,L#, and the zero-flux boundary
conditions atx50 andx5L.

III. NUMERICAL RESULTS

We assume the following values for the parameters:A1
51022, A251024, A350.505, B50.625, B1
5-3
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57.9931023, B254.6531025, Ds51025, and Dp55
31025.

The nullcline for s on the phase plane (p,s) has an
S-shape with three branches: the lower branch which is
tracting, the repelling middle branch, and the attracting up
branch. The upper branch approaches asymptoticalls
5A1 /A2 for p going to infinity.

For these values of the parameters Eqs.~11! and~13! have
three stationary states:

sI51.227 542 47, pI540.585 927 8, ~18!

sII 52.362 912 366, pII 538.144 272 305, ~19!

sIII 513.885 593 25, pIII 513.364 314 68. ~20!

The stateI is a stable node,II is a saddle point, wherea
III is an unstable focus.

The nullclines shown in Fig. 1 separate the phase pl
(p,s) into six regions. In regionA the kinetic term fors
(s-component of vector field! is positive and the kinetic term
for p (p-component of vector field! is negative. This mean
that in this regions increases andp decreases in the homo
geneous system. In regionB both kinetic terms are negativ
and the variabless and p decrease. In regionC the kinetic
term for s is negative and the kinetic term forp is positive
which means thats decreases andp increases. In regionD
both components of the vector field are positive ands andp
increase. In regionE both kinetic terms are negative an
therefores as well asp decreases. In regionF both compo-
nents of the vector field are positive ands as well asp in-
crease.

An evolution of the system strongly depends on a ratio
diffusion coefficients and on values of initial conditions. O
course, if initial disturbance of the stable stationary stateI is
sufficiently small, then the system will evolve to homog
neous distributions ofs andp given by the stateI. In order to
obtain nontrivial evolutions in the form of the traveling im

FIG. 1. Nullclines fors ~continuous line! and forp ~dotted line!
on the phase plane (p,s). The regions with different signs of th
vector fields forp ands are denoted byA, B, C, D, E, andF.
02140
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pulse, the initial conditionsin should be higher than som
critical value and an excited subinterval ofx should be suf-
ficiently large. For equal diffusion coefficients an evolutio
of sufficiently large initial disturbance is similar as for exc
able systems with one stable stationary state. The single t
eling impulse is formed and spreads through the system w
constant velocity without changing its shape, and disappe
at the boundaries. A completely different situation is o
served if the ratio of diffusion coefficientsDp /Ds is suffi-
ciently large. An example of the evolution for the followin
initial condition

s~0,x!5sin for xP@0,l # and s~0,x!5sI for xP~ l ,L#,
~21!

p~0,x!5pin for xP@0,l # and p~0,x!5pI for xP~ l ,L#

~22!

~with l !L) is shown in Fig 2. In the sequel we describe
detail this evolution. The initial profile becomes continuo
due to diffusion and the maximal value ofs in disturbed
interval grows whereasp decreases. The neighborhood po
tioned to the right ofl is subsequently excited and the fro
of excitation is formed@see Fig. 2~a!, continuous line#. Si-
multaneously a local minimum ofs is formed before the
front of excitation. Next, atx50 and insidel s falls down
and p grows @see Figs. 2~a! and 2~d!, long dashed lines#
which follows in formation of the first impulse@see Figs.
2~a! and 2~d!, dashed lines#. This impulse is traveling to the
right but its shape changes@compare dashed lines with dotte
lines in Figs. 2~a! and 2~d!#. When the impulse approaches
vicinity of the right boundary it slows down and stops.
sufficiently long systems the first impulse divides sponta
ously creating new pulses behind it, as is shown in Figs. 2~b!
and 2~e! and 2~c! and 2~f!. New pulses do not divide them
selves but their shapes evolve slowly approaching station
distributions during long periods of time@see Figs. 2~b!, 2~e!,
2~c!, and 2~f!#. The division is stopped when the first impuls
approaches the vicinity of the right boundary. In a spatia
infinite system the division of the first impulse will be con
tinued up to infinity.

Of course, transient solutions depend on initial conditio
which is a typical property for partial differential equation
of the parabolic type, but in our model also asymptotic, s
tionary solutions exhibit such dependence. This means
different stationary structures may coexist in the same s
tem. An example of such coexistence is shown in Figs. 3~a!
and 3~b!, where only four among ten possible different pa
terns are shown. The pattern with two pulses inside and
half of the pulse at the left boundary and its symmetric
flection, and the pattern with one pulse inside and the ha
the right boundary as well as three patterns with two hal
of the pulse at both boundaries are not shown in this figu
Any stationary periodical structure exists in some interval
L. At a minimal intervalL a pattern consists of some numb
of pulses with single maximum for large values ofs and
small maximum at low values ofs. If the size of the system
grows the single maximum at larges initially increases but at
some size it starts to decrease and with further growth ofL it
splits into two maxima and minimum between them. T
5-4
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FIG. 2. Spatiotemporal evolution ofs(t,x)
~a,b,c! and p(t,x) ~d,e,f! on the interval@0,10#
for the following initial conditions:s(0,x)520
for xP@0,0.1# and s(0,x)5sI for xP(0.1,10#;
p(0,x)535 for xP@0,0.1# and p(0,x)5pI

for xP(0.1,10#; and the boundary
conditions (]s/]x)u05(]s/]x)u15(]p/]x)u0

5(]p/]x)u150. ~a! and ~d!: continuous lines,
t512 500; long dashed lines,t525 000; dashed
lines,t550 000; and dotted lines,t5150 000;~b!
and ~e!: continuous lines, t5235 000; long
dashed lines, t5275 000; dashed lines,t
5350 000; and dotted lines,t5412 500.~c! and
~f!: continuous lines,t5475 000; long dashed
lines, t5557 500; dashed lines,t5625 000; and
dotted lines,t52 500 000.
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maximum at small values ofs increases in the whole regio
of L where the stationary structure exists.

It is easy to check that nonlinear, partial differential equ
tions of the type considered here are symmetrical with
spect to reflections inx. The consequence of this symmet
and the zero-flux boundary conditions is that patterns c
sisting of a given pattern and its reflections are also soluti
of the system provided the selected pattern is the solution
Fig. 4 the dependence of numbers of pulses in station
periodical structures on size of the system is shown. Circ
show minimal intervals on which a given pattern may ex
whereas triangles mark maximal intervals. These points
along two straight lines, which is the consequence of
symmetry of the system. The lines are described by

ymin50.6250•L, ~23!
02140
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ymax50.1895•L ~24!

and the maximal and minimal number of pulses in a stati
ary periodical structure for a givenL are determined by

nmax5@0.6250•L#max, ~25!

nmin5@0.1895•L#min ~26!

where the symbols@•#max and @•#min denote a nearest les
number and a nearest greater number of the type 1/2•n for
n50,1, . . . ,respectively.

The stationary structures obtained in our model may c
sist of integer pulses or have additionally a half of a pulse
one or both boundaries. Therefore for a givenL a number of
coexisting stationary periodical structures is given by
al

ne
nd
o

ot
FIG. 3. Examples of the stationary periodic
structures coexisting on the intervalL55: con-
tinuous lines, one pulse; long dashed lines, o
and a half pulse; dashed lines, two pulses; a
dotted lines; three pulses. The structure with tw
and a half pulses existing on this interval is n
shown.
5-5
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N52@2~nmin2nmax!11#. ~27!

This number strongly increases withL.

IV. QUALITATIVE ANALYSIS

In the theory of ordinary differential equations a proje
tion of states of a system on its phase space is a fundam
tool @59#. In the phase space solutions of the system
represented by trajectories in which exact information ab
time dependence of the solutions is lost.

States of a system described by partial differential eq
tions of the parabolic type may by analyzed in similar wa
but in this case the phase space corresponds to contin
distributions in space of the variables and has infinite
countable dimension. Therefore such an approach is pr
cally unprofitable. However, some qualitative informati
may be extracted from the projection of solutions to the p
tial differential equations on the phase space for ordin
differential equations in which diffusion terms are omitte
In this approach, exact information about the dependenc
variables on space and time is lost, but changes in shap
obtained projections allows one to explain and predict qu
tative properties of spatiotemporal evolution of the syste
In the sequel we will use this approach in the qualitat
analysis of solutionss(t,x) andp(t,x) to Eqs.~16! and~17!
by projections of them on the phase plane (p,s). For the
ordinary differential equations~11! and ~13! a state of the
system is identified with a point in the phase plane (p,s). In
our approach a projection of the solutionss(t,x) andp(t,x)
to the partial differential equations~16! and~17! corresponds
to a curve in the phase plane (p,s). A solution to Eqs.~11!
and ~13! gives a phase trajectory, which is the curve on
phase plane (p,s), whereas an evolution described by Eq
~16! and ~17! gives continuous transformations of a give
curve into other curves on the same plane. Let us men

FIG. 4. Dependence of numbers of pulses in stationary peri
cal structures on a size~L! of the system. Circles denote the min
mal L on which patterns with a given number of pulses may ex
Triangles mark the maximalL on which patterns with a given num
ber of pulses may exist.
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that stationary homogeneous solutionss(t,x) andp(t,x) cor-
respond to points on (p,s), because in this particular cas
there is no difference between the partial and the ordin
equations. Solutionss(t,x) and p(t,x) in the form of a sta-
tionary traveling impulse, which spreads in infinite syste
~initial value problem!, give on the phase plane (p,s) an
invariant curve which starts and ends at the stable station
state I. Sufficiently far from the front of the impulse an
behind the back of it,s(t,x) andp(t,x) are very close to the
stable stationary stateI. The solution in the form of the sta
tionary traveling impulse is obtained for Eqs.~16! and ~17!
in the case of equal diffusion coefficients. In this case
curve crosses in turn the following region
C, E, A, B, C, andD ~see Fig. 5!. For finite systems the
closed curve is only an approximation which is reasonable
the front and the back of the impulse are far from bounda
of a system. It is noteworthy that the same sequence
crossed regions, excluding the regionsC andE, is obtained
in the homogeneous system for a trajectory starting from
regionA above the middle branch of the nullcline fors.

If the ratio of the diffusion coefficients is sufficientl
large, then the impulse changes its shape when traveling,
its projection on the phase plane (p,s) will be a curve, but its
contour will change. The qualitative analysis described
low allows us to determine the form of the projection whi
corresponds to asymptotic solutions of the Eqs.~16! and
~17!. Our analysis of the solutions to Eqs.~16! and ~17! is
based on estimations of reaction and diffusion terms at
treme values ofp ands and in their close neighborhoods. W
will concentrate our analysis on the evolution of projectio
for the initial conditions~21! and ~22!.

In the initial interval of time the front of the impulse i
formed ~see Fig. 6, continuous line! and projections of the
profiles of s(t,x) and p(t,x) on the phase plane form th
curve which starts at the stable stationary stateI at x5L ~the
right tip!, where s has initially its local minimum andp
reaches maximum, and ends at the maximum value ofs and

i-

t.

FIG. 5. Projection ofp(t,x) and s(t,x) forming the stationary
traveling impulse on the phase plane (p,s) for equal diffusion co-
efficients Dp5Ds51025. Thick continuous line denotes th
nullcline for s, thick dotted line the nullcline forp.
5-6
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the minimum value ofp at x50 ~the left tip!. Due to the
conditionDp.Ds , the piece of the curve starting at the rig
tip, which lies between the lower and the middle branches
the nullcline fors, is shifted to left, as compared with th
equal diffusion coefficients case, and is pushed out from
regionE to the regionsC andF, because the negative valu
of the diffusion term forp prevails over its kinetic term
Moreover, becauses is a faster variable as compared withp,
the negative kinetic term fors prevails over its positive dif-
fusion term and the piece of the curve is shifted down cl
to the lower branch of the nullcline fors ~see the inset in Fig
6!. In this way a small local minimum ofs before the front of
the impulse is formed. The whole projection appears to b
regionsC, F, andA. The left tip of this curve is in the region
A where the kinetic term fors is positive, but its diffusion
term is negative and the kinetic term forp is negative,
whereas its diffusion term is positive. In this interval of tim
both kinetic terms at the left tip prevail over the diffusio
terms and in consequence, the left tip moves upwards
left on the phase plane. At some moment of time the left
approaches the nullcline fors. After crossing of this nullcline
the tip appears to be in regionB where both kinetic terms ar
negative. The negative kinetic term fors is amplified by the
negative diffusion term ands at the left tip decreases mor
quickly than in its surroundings. In consequence, at so
moment of time instead of the local maximum ofs at x50
the local minimum ofs is formed ~see Fig. 6, long dashe
line!. The diffusion term fors changes its sign from negativ
to positive but its value is to small to stop the decreasing
s(t,0). The minimum ofs becomes deeper and at some tim
the tip crosses the nullcline forp. After crossing this
nullcline the left tip appears to be in regionC where the
kinetic term forp is positive, sop(t,0) starts to grow form-

FIG. 6. Projections ofp(t,x) and s(t,x) on the phase plane
(p,s) at selected times showing the formation of the first impu
on the interval withL53. Continuous line,t514 000; long dashed
line, t519 000; dashed line,t533 000; and dotted line,t544 000.
Inset shows the formation of a minimum ofs(t,x) before the front
of the first impulse. Long dashed line,t5500 and short dashed line
t52000. Thick continuous line denotes the nullcline fors, thick
dotted line the nullcline for p.
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ing a local maximum which is accompanied by a change
the sign of its diffusion term from positive to negative~see
Fig. 6, dashed line!. At the left tip s(t,0) falls down close to
a vicinity of the lower branch of the nullcline fors and si-
multaneouslyp(t,0) continues its growth. In this way th
back of the impulse is formed. The left tip shifts itself insid
the regionC very close to the lower branch of the nullclin
for s and tends slowly to the stable stationary stateI because
the diffusion term is to small to stop the increase ofp. In this
way the first impulse is created in the form of a loop co
sisting of the front~the part of the projection positioned t
the right from the maximum fors) and the back~the part
positioned to the left from the maximum fors) ~see Fig. 6,
dotted line!. Simultaneously, in regionB on the piece of the
back positioned between the nullclines a local minimum op
is formed. The diffusion term forp is positive and prevails
over the kinetic term. Therefore this piece of the projection
shifted to the right and next pushed out from regionB to
regionsA andF ~compare the dotted line in Fig. 6 with th
continuous line in Fig. 7!. The projection of the impulse
extends from the right tip (x5L) which is close to the stable
stationary stateI and goes throughC, F to the maximum ofs
positioned inA ~the front of the impulse! and from the maxi-
mum of s throughA, F, and C, and ends at the left tip (x
50) ~the back of the impulse!. Further evolution depends o
the size of the system~compare Fig. 7 with Figs. 8 and 9!. If
the size is small (L'3), then the small minimum ofs before
the front of the impulse attains a close neighborhood of
right boundary. Atx5L the second derivative ofp(t,x) with
respect tox is negative and decreases while the front a

e

FIG. 7. Continuation of the projection’s evolution shown in Fi
6. The evolution of the projections to stationary one pulse struc
is shown for the following times: continuous line,t550 000; long
dashed line,t560 000; dashed line,t568 000; and dotted line,t
51 500 000. Inset shows the decrease ofp at x5L in time. Con-
tinuous line with open circles,t550 000; long dashed line with
open squares,t560 000; and dotted line with stars,t51 500 000.
The left most symbols denote values ofp at x5L. The increase of
values ofp at x50 for the same times is shown by the same so
symbols. Thick continuous line denotes the nullcline fors, thick
dotted line the nullcline for p.
5-7
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proaches the right boundary. In consequence,p(t,L) de-
creases because the kinetic term for it is very small here
the diffusion term prevails on it~see the inset in Fig. 7!.
Simultaneously, the second derivative ofs(t,x) at x5L be-
comes more negative while the front approachesx5L. In
consequence, the small local maximum ofs(t,L) decreases
This corresponds to a displacement of the right tip aw

FIG. 8. Projections ofp(t,x) and s(t,x) on the phase plane
(p,s) at selected times showing the division of the first impulse
the interval withL56. Previous evolution is very similar to tha
shown in Fig. 6. Continuous line,t554 000; long dashed line,t
5160 000; dashed line,t5254 000; and dotted line,t5260 000.
The formation of the nose and its tip, as well as the pulse behind
first impulse is clearly seen. Thick continuous line denotes
nullcline for s, thick dotted line the nullcline for p.

FIG. 9. The same as in Fig. 8 but here the evolution of the fi
impulse and the new pulse to asymptotic projection is shown for
following times: continuous line,t5270 000; long dashed line,t
5280 000; dashed line,t5340 000; and dotted line,t52 000 000.
Inset shows the details of the projections. The drift of the fi
impulse and the new pulse to the stationary structure is seen. T
continuous line denotes the nullcline for s, thick dotted line
nullcline for p.
02140
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from the stable stationary stateI along the lower branch o
the nullcline fors ~see the inset in Fig. 7!. This displacement
causes a threshold for excitation of the system from the s
I that increases, and if the displacement is sufficiently lar
then the front stops to move to the right. Next, slow chan
of the whole projection occur. During this slow evolution th
competition between diffusion and kinetic terms causes
loop formed by the front and the back of the impulse
become more and more narrow. Changes of the front and
back in regionsA andC play an important role in this evo
lution. The narrowing of the loop may be explained in t
following way.

For the part of the projection positioned in the regionA
the kinetic terms forp for the front and the back are negativ
The kinetic term for the front is more negative than for t
back, because a part of the projection corresponding to
back is closer to the nullcline forp than a part correspondin
to the front. Moreover, the diffusion term forp attains its
positive maximum at the minimum ofp which is positioned
in the back. Therefore at the minimum ofp and around it the
kinetic and the diffusion terms forp can compensate them
selves much more exactly than in the front. The posit
diffusion term for p can prevail over the negative kineti
term in the back, whereas the opposite condition is fulfill
in the front. Simultaneously, the kinetic and diffusion term
for s influence the part of the front and the back positioned
A. The positive kinetic terms fors attempt to shift the front
as well as the back upwards but this movement is restra
by the negative diffusion term around the maximum ofs.
The diffusion term along the back has smaller absolute va
than along the front and therefore a distance between the
thes direction decreases. At the maximum ofs the diffusion
term decreases and compensates the kinetic term more
more exactly. In consequence, the compensation of the
netic terms with the diffusion terms for both variables lea
to the joining of the front and the back.

In region C the kinetic term forp is positive and suffi-
ciently large to prevail over the diffusion term along the ba
and the negative kinetic term fors is to small to compensate
the positive diffusion term and therefore the projection of t
back moves right and upwards. The front is positioned i
weaker vector field forp than the back. Let us mention tha
p(t,x) at x5L remains closer topI than atx50 ~see the
inset in Fig. 7! and the minimum ofp is positioned around
the center of the system. Therefore at the front the diffus
term for p is more negative than at the back. The negat
diffusion term prevails over the positive kinetic term an
therefore the front moves to the left. On the other hand
diffusion term fors is positive but is to small to compensa
the negative kinetic term. Therefore the projection of t
front moves left and downwards and the distance betw
the front and the back decreases and they joint themse
asymptotically. In this way the loop consisting of the fro
and the back shrinks to ‘‘single curve’’ and the asympto
distributions of both variables become symmetric with
spect to the spatial center of the system.

If the size of the system is sufficiently large (L'6 and
larger, see Fig. 4!, then the evolution is very similar to tha
presented in Fig. 6 and does not stop on the stationary
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COEXISTENCE OF LARGE AMPLITUDE STATIONARY . . . PHYSICAL REVIEW E63 021405
impulse~Fig. 7! but continues in a different way~see Fig. 8!.
In such a case, the first impulse continues its traveling to
right boundary and the most important changes occur in
part of the projection positioned around the maximal value
s and the minimal value ofp. This part is in the regionA,
where the vector field is positive fors and negative forp and
the diffusion terms are negative and positive, respectiv
The maximum ofs starts to grow shifting this part of th
curve to the region with a stronger field forp ~compare con-
tinuous lines in Figs. 7 and 8!. The kinetic term forp prevails
over the diffusion term and in consequence a minimum op
in the back moves up and left, and at some moment ha
cross the nullcline fors. After crossing the nullcline, a down
oriented nose with the tip is formed~see Fig. 8, long dashe
line!. Formation of the tip of the nose corresponds to
appearance of the local minimum ofs surrounded by two
local maxima. The diffusion term fors becomes positive a
the tip of the nose, but is to small to compensate the nega
vector direction field fors and the tip of the nose move
down away from the nullcline fors approaching the nullcline
for p at some moment of time. From this momentp at the tip
of the nose starts to grow forming its local maximum~see
Fig. 8, dashed line!, but s decreases very quickly because
the very strong vector field for it and approaches values c
to the lower branch of the nullcline fors. The tip of the nose
moves in regionC along the lower branch of the nullcline fo
s towards the stable stationary stateI and the nose itsel
becomes very narrow. In this way the division of the fi
impulse occurs and a new pulse is formed behind it~see the
dotted line in Fig. 8!. The curve in the form of two loops is
formed on the phase plane. The higher part of the wh
projection corresponds to the first impulse, whereas
lower one corresponds to the newly created pulse. The
impulse consists of the front and the back and continues
traveling to the right boundary. The front of it starts at t
right tip of the whole projection~at x5L) and ends at the
maximum value ofs whereas the back starts at the maximu
value ofs and ends at the tip of the nose. The newly crea
pulse does not change much its position inx. The part of the
distribution in x positioned to the right from its maximum
value ofs corresponds to the left part of the projection on t
phase plane (p,s) starting from the tip of the nose and en
ing at the maximum ofs. The part of the profile inx posi-
tioned to the left from the local maximum ofs corresponds to
the right part of the projection, which starts at its maximu
of s and ends at the left tip~at x50) of the whole projection.

While the division of the first impulse develops, first th
left part of the projection of the pulse is pushed out fro
region B, because in this region the diffusion term forp is
positive and prevails over the negative kinetic term. Ne
the projection of the back of the first impulse is also push
out from regionB for the same reason~see Fig. 8, dotted
line!. In the piece of the projection of the pulse around t
maximum ofs and the minimum ofp the positive diffusion
term for p is sufficiently large to shift this piece to the righ
Simultaneously, this piece moves upwards, because
negative diffusion term fors is unable to compensate th
positive kinetic term. The piece of the projection of the fi
impulse positioned around the maximum ofs and the mini-
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mum of p moves upwards too, because the positive kine
term for s prevails over the negative diffusion term fors
~compare the dotted line in Fig. 8 with the continuous line
Fig. 9!.

During further evolution both parts the pulse as well
the front and the back of the first impulse move upwards a
approach each other, because the left parts of them rema
the weaker vector field forp than the right parts~see Fig. 9!.
The pieces close to the maximum ofs and the minimum ofp
move to the left because they are shifted to the stron
vector field forp, where the kinetic term prevails over th
diffusion term. The diffusion terms compensate the kine
terms more and more accurately and asymptotically b
parts of the pulse join. The evolution of the pulse is simi
to the evolution of the first impulse shown in Fig. 7. Simu
taneously, the projection of the front of the first impulse joi
with its back and the loop corresponding to them joins w
the loop for the pulse forming the ‘‘single’’ curve.

If a size of the system is larger, then after the formation
one pulse the evolution of the projection of the first impu
repeats the scenario described above and next the divisio
the first impulse may occur provided there is enough plac
x before it ~see Fig. 2!. In this way subsequent new pulse
may be generated in the system due to the division of
first impulse. If the first impulse attains the right bounda
then it stops, because the threshold for excitation from
stable stationary stateI increases. As it is explained abov
the increasing of the threshold is caused by the shift of
right tip away from the stateI along the lower branch of the
nullcline for s. After stopping, the first impulse evolves sim
larly to the pulses generated behind it and the piece of
projection of it attains the projections of the previous puls
The tips of subsequent noses as well as the left tip co
sponding tox50 asymptotically attain the right tip and
stationary periodical structure is formed. Any stationary p
riodical structure has the projection in the form of a sing
curve along which the profiles ofs and p are distributed a
given number of times corresponding to a number of spa
periods composing the structure. This form of the project
on the phase plane differs substantially from the project
of the stationary traveling impulse observed at equal dif
sion coefficients as well as from the projection of asympto
oscillatory solutions to the ordinary differential equation
which are represented by closed curves.

The above analysis concerns initial conditions with dist
bances of a small interval ofx at the left boundary. For othe
initial conditions a spatiotemporal evolution is essentially t
same. If the system is excited in some number of intervals
x, which are sufficiently separated, then excitations sprea
both sides of disturbed intervals forming fronts. These fro
of excitation stop before they meet due to the same reas
as the front of the first impulse stops at the right bounda
Behind the fronts the backs of impulses are formed. If th
is enough space inx, then each impulse leaves noses beh
it according to the scenario described above for the first
pulse. If initial conditions generate stationary periodic
structures with half of the pulse at the right or the left boun
ary or at both of them, then in the evolution its part corr
sponding to the formation of the last nose is omitted. Inste
5-9
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of the formation of the last nose, the left or the right tip sto
at the minimal value ofp and maximal values ofs.

Some number of stationary periodical structures may
exist for a given size of the system. Their projections on
phase plane (p,s) for L55 are shown in Fig. 10. Each pro
jection starts at the right tip positioned in regionC very close
to the lower branch of the nullcline fors in some distance
from the stateI, goes through the minimum value ofs and
next leaves regionC, crosses the regionF, and next goes
through regionA reaching the maximum value ofs ~see Fig.
10, dotted, short dashed, dashed, and long dashed line! or
eventually ends in regionB reaching the local minimum ofs
positioned between two the maxima~see Fig. 10, continuou
line!. The stationary projections form a one parameter fam
of curves on the phase plane (p,s). In cases when a given
structure exists at the maximal interval ofx the projection of
it cannot be described as a functions5p(s) or adverse one
and therefore the whole family cannot be described b
simple formula.

There exists a well-defined range in the phase plane (p,s)
which is occupied by all stationary structures. In this ran
the kinetic terms are exactly compensated by the diffus
terms. This range may be characterized by the minimal
maximal values ofp for a given size of the system. In Fig. 1
the circles denote the minimal values ofp and extreme val-
ues ofs. All symbols situated to the right of the nullcline fo
s correspond to the maximum values ofs, whereas the sym
bols to the left of this nullcline correspond to the minim
values ofs lying between two maxima ofs. The left most
and lowest symbol corresponds to all structures existing
maximal intervals ofx, whereas the most right one denot
all structures existing on the minimal intervals ofx. In Fig.
12 the stars denote the values ofp ands at the boundaries, if
structures consist of integer pulses. For structures with a

FIG. 10. Projections ofp(t,x) and s(t,x) on the phase plane
(p,s) for all stationary periodical structures coexisting on the int
val L55. One pulse structures, continuous line; one and a
pulse structures, long dashed line; two pulses structures, da
line; two and a half pulses structures, short dashed line and t
pulses structures, dotted line. Thick continuous line denotes
nullcline for s, thick dotted line the nullcline forp.
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pulse the symbol denotes the maximum value ofp and the
maximum value ofs situated in a range of small values ofs
for a given size of the system. These points lie very close
the nullcline fors, which means that diffusion terms fors are
very close but not equal to zero. The right most point cor
sponds to all structures existing on the maximal intervals
x, whereas the left most one represents all structures exis
on the minimal intervals ofx.

V. DISCUSSION

In our model the stationary periodical structures app
due to two main effects: the division of the traveling impul

-
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FIG. 11. Changes of the minimal values ofp and extreme values
of s for various sizes of the system. The left most and lowest sy
bol corresponds to all structures existing on maximal intervals ox,
whereas the right most one denotes all structures existing on
minimal intervals ofx. Thick continuous line denotes the nullclin
for s, thick dotted line the nullcline forp.

FIG. 12. Changes of the maximal values ofp and maximal
values ofs for various sizes of the system. The right most symb
corresponds to all structures existing on the maximal intervals ox,
whereas the left most one represents all structures existing on
minimal intervals ofx. Thick continuous line denotes the nullclin
for s, thick dotted line the nullcline forp.
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COEXISTENCE OF LARGE AMPLITUDE STATIONARY . . . PHYSICAL REVIEW E63 021405
and the stopping of its front at the boundary or at the mee
of two fronts spreading in opposite directions. Similar effe
have been observed in other models of stationary period
structures but they were caused by bifurcations from ex
able to trigger regimes in a two-variable subsystem c
trolled by spatial distribution of the third variable@44,60#.
The division of the traveling impulse in the present mode
caused by the fact that the diffusion term forp is sufficiently
large to shift a part of the projection ofp ands on the phase
plane (p,s) from regionA, where the kinetic term fors is
positive to regionB, where this kinetic term is negative an
sufficiently large to generate the nose which approache
vicinity of the lower branch of the nullcline fors. The stop-
ping of the front is caused by the fact that the diffusion te
for p is sufficiently large to shift part of the projection ofp
ands away from the stable stationary stateI in such a way
that the distance from it to the middle part of the nullcline f
s increases what stops the spreading of excitation ofs. The
analysis presented above allows one to explain in a qua
tive way the results obtained in numerical calculations
showing whether reaction or diffusion terms prevail loca
in Eqs.~16! and ~17! what governs increasing or decreasi
of the variables. The approach used in our analysis seem
be fruitful and may be applied to a qualitative analysis
other models. However, the analysis will be much more d
ficult for more than two variable models like the Oregona
@61# or the four-variable model for the FIS reaction@24#, in
which a large amplitude stationary structure as well as o
patterns have been found in numerical calculations.
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The coexistence of small amplitude stationary periodi
structures has been found close to the Turing instability@62#.
Spatial multistabilty of other patterns has also been discus
for a two-variable reaction diffusion model@63,64#, but to
our best knowledge, our model is the first example of
coexistence of the large amplitude stationary periodi
structures in one-dimensional systems. A number of coex
ing structures may be as large as one wishes, if the size o
system is sufficiently large. One can expect that in m
dimensional systems different initial conditions may gen
ate a very rich variety of observed patterns. The depende
of asymptotic patterns on initial conditions leading to th
coexistence may also be helpful in the explanation of
diversity of patterns observed in physical systems like se
conductors@65# and premixed flames@66–68#, which seem
to be very important to biological systems@69#.

The chemical scheme~1!–~10! is realistic because it is
based on elementary monomolecular or bimolecular re
tions excluding autocatalysis. The scheme contains so
hints to look for such as kinetics in real chemical systems
is well-known that many enzymes are inhibited by their
actants and products and therefore our model in two an
three spatial dimensions seems to be helpful in the expla
tion of pattern formation in biological systems.

We believe that analogical evolutions may be observed
a two-variable generic system with similar shapes of
nullclines, in which the kinetic terms are replaced by cub
polynomial in the equation fors and linear terms in the equa
tion for p.
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