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Coexistence of large amplitude stationary structures in a model of reaction-diffusion system
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The two-variable reaction-diffusion model of a chemical system describing the spatiotemporal evolution to
large amplitude stationary periodical structures in a one-dimensional open, continuous-flow, unstirred reactor is
investigated. Numerical solutions show that the structures are generated by divisions of the traveling impulse
and its stopping at the boundary of the system. Analyses of projections of numerical solutions on the phase
plane of two variables elaborated in the present paper allow qualitative explanation of the results. The coex-
istence of the large amplitude stationary periodical structures is shown. A number of coexisting structures
grows strongly with increasing length of the reactor and may be as large as one wishes. The relationship of
these results to biological systems is stressed.
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I. INTRODUCTION [18,19; hexagonal, striped, and rhombic stationary, periodic
Turing patterns[12—15,20—-28 repulsive fronts, lamellar
Since the pioneering work by Turind] it has become structures, and self-replicating and oscillating sgé#,25.
clear that minimal models that were able to describe the pat- Predictions and understanding of these experimental re-
tern formation in biological systems might be based onsults is mainly based on the bifurcation theory. Amplitude
reaction-diffusion equations. This result stimulated searchesquations derived from the perturbation method allow one to
of patterns in chemical systemi2]. In the 1970s so-called determine stability of assumed solutions. In this way the ap-
target pattern$3,4] and spiral wave$5,6] have been found pearance of subcritical or supercritical Turing structures has
in experiments performed in Petri dishes with thin layers ofbeen predicted, as the consequence of instability of homoge-
the Belousov—Zhabotinsk¢BZ) reactions[4,7]. These pat- neous stationary or oscillating solutions due to infinitesimal
terns were transient ones, because the experiments were pepatial disturbance$l,2,26—-29. Analyses of the Ising—
formed in closed chemical systems. Experimental studies dBloch bifurcation[30], where a stationary front bifurcates
stationary(asymptoti¢ patterns require sustained far-from- into two counter propagating fronts in a bistable reaction-
equilibrium conditiong2]. Such conditions have been cre- diffusion model, have suggested that this bifurcation is the
ated in an open Couette reactor, which allows the strongrucial effect in formation of lamellar structurf31—34 and
increase of effective diffusion coefficieni8], but extensive other pattern$35] observed in the CIMA syster24,25.
laboratory studies begun in the 1980s when open, Modeling of real patterns is strongly hindered by the fact
continuous-flow, unstirred reactai@FUR) were constructed that all chemical systems in which such patterns have been
[9]. In CFURs patterns form inside a gel layer with well- observed are complex in the sense that many varidbtes
defined reagent concentrations at its boundaries. In this wagentrations of reagentsust be used in their models. To the
natural convection, which is caused by concentratiden-  best of our knowledge, there are no theorems which allow
sity) inhomogeneities, may be eliminated and the behavior obne to predict the formation of the patterns in two and more
the system is determined by reaction and diffusion processesriables reaction-diffusion systems in one and more spatial
only. Sustained nonequilibrium conditions may be main-dimensions. There are well-known theorems by Kanel
tained indefinitely by a continuous refreshment of chemical36,37], Fisher [38], and Kolmogorov, Petrovsky, and
reservoirs being in contact with the gel boundaries. BesideRiskunov[39], which define general properties of kinetic
the BZ system, two others ones have been extensively studerms necessary and sufficient to obtain solutions in the form
ied, namely the chloride-iodide-malonic a¢idIMA) system  of traveling fronts, but these theorems concern reaction-
[10] and the ferrocyanide-iodate-sulfitElS) reaction[11]. diffusion systems with one variable only. Therefore model-
A kind of observed pattern depends on a geometry of théng and predictions of the pattern formation are based mainly
system and therefore CFURs with various geometries haven numerical simulations of generic or specially selected
been used in experiments. Thin-strip reactd®,13, disk  models of reaction-diffusion systems. However, the Kanel
reactord 14,15, and also CFURs with other geometries havetheorem or the Fisher and Kolmogorov, Petrovsky, and
been used16,17. Patterns observed in one-dimensional re-Piskunov theorem can be helpful in analyses of models with
actors may be observed also in two- and three-dimensionahany variables provided there is the possibility to separate
ones but not vice versa. In the one-dimensional Couette radifferent time scales for individual variables. This approach
actor besides the traveling front, two kinds of single steadyhas been allowed to construct models of target pattéeasl-
front, two, and three steady fronts, one, two and three osciling center[40,41]), large amplitude stationary periodical
lating fronts, simple and complex colliding fronts, bursting structures [42—45, oscillating fronts (chemical pulsar
fronts, bursting and oscillating fronts, and alternating burst{46,47]), bursting fronts(standing wave$48]), and modu-
ing and colliding fronts have been obser|&ll Experiments lated large amplitude stationary structufe®]. The other
in two-dimensional CFURs have revealed spiral wavesapproach based on the construction of stationary structures in
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two-variable(activator-inhibitoj systems in an excitable re- of elementary chemical reactions in which dynamics at rea-
gime has also been elaboraféd—53. sonable assumptions may be reduced to two variables.
In this paper we present studies of stationary periodical
structures and therefore it is necessary to stress the difference
between small amplitude stationary periodical Turing struc- Il. MODEL
tures and large amplitude ones. The small amplitude station-
ary periodical structures are generated due to the Turing in- The model consists of the following elementary, mono-

stability in which a homogeneous stationary state becomegolecular, and bimolecular reactiofsxcluding autocataly-
unstable to spatial disturbances. The large amplitude statiorjg):

ary periodical structures are generated in excitable or bistable
systems in which homogeneous stationary states remain

stable to small disturbances and the structures may be gen- ky
erated provided disturbances are sufficiently large. Such So=3S, (1)
structures may also appear in homogeneously oscillating sys- ko1
tems by sufficiently large local disturbanf45]. There are
two main routes of the generation of large amplitude station-
ary periodical structures in one-dimensional reaction- ka
diffusion systems. One of them is the generation of new S+E=SE @
pulses of excitation before previously generated pulé8s k-2
The other one is the formation of the structures by division
and the stopping of traveling impulsg44,45,54,5% These .
effects have been used in modeling of stationary periodical 3
structures in three-variable reaction-diffusion systdd&— SE-E+P, &)
45]. The third variable is important in these models because
its spatial distribution controls bifurcations from excitable to
bistable regimes. Recently, large amplitude stationary peri- ka
odical structures as well as other patterns have been found in SE+ Sf SoE, (4)
the two-variable reaction-diffusion model for periodic -
boundary condition§54,55. These structures have been ob-
served in the Gray—Scdi56,57 model with three stationary ‘
states, one of them was a stable focus, whereas two others P+E:5 EP (5)
were unstabldéa saddle-point and an unstable focusth a ks '
sufficiently large difference in diffusion coefficients. They
appear due to division and stopping of a traveling impulse. If
the difference in diffusion coefficients is not large enough, ks
then the well-known traveling impulse is observed. These P+SE=SEP, (6)
results have been obtained by numerical solutions and their k_s
explanation is still open. Nevertheless, this is a very impor-
tant observation, because it offers new possibilities in mod-
eling of the patterns. Each pattern observed inrthvariable ks
model can be found in then(-1) variable model obtained P+SE=SEP, (7)
by adding one variable. Then(-1) variable model usually k-s
has more ample homogeneous dynamics and may exhibit a
richer variety of spatiotemporal patterns than theariable ’
one. , 0,

In the present paper we describe the formation of large P+E k: E'P, ®)
amplitude stationary periodical structures in a one- e
dimensional system described by two reaction-diffusion
equations. We present also explanations of division and stop- K
ping of traveling impulses. Our analysis is based on qualita- E'P_E +R 9)
tive estimations of reaction and diffusion terms in the kinetic '
equations on a phase plane corresponding to a homogeneous
system. Like the Gray—Scott model our system has the same ‘
type of three stationary statéstable and unstable foci and a

P—Q. (10

saddle-point In the Gray—Scott model nullclines for corre-
sponding ordinary differential equations are discontinuous
and therefore the analysis of it is difficult. In our model the

nullclines are continuous and the reaction-diffusion system is We assume the, is a reservoir variable, whose concen-
easier to analyze. Our model is based on the realistic schenfgition is maintained constant. Alternatively, stefig may
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be treated as inflow/outflow terms in a continuously stirredtrations of the reactar and the producP. In this case one
tank reactor(CSTR). The reactant S is transformed to the can separate scales of time, in which the concentrations of
product P with E as the catalyisiteps(2) and(3)]. This part  the reagents change. The variablesSE, EP, S,E, SEP,

of the scheme is the well-known Langmuir—HinshelwoodS,EP, andE’ become fast variables, wheregsand P are
mechanism of a catalytic reactidar the Michaelis—Menten the slow ones. According to the Tikhonov theorgs8], the
kinetics for an enzymatic reactiprStep(4) is the inhibition  fast variables in a slow time scale are equal to their quasis-
of the Langmuir—Hinshelwood mechanismor the tationary values and in this scale the dynamics can be de-
Michaelis—Menten schemdy an excess of the reactafit  scribed by a reduced system of slow variables. The kinetic
The next three steps present an allosteric inhibition of freeequations forS andP in dimensionless form are

enzyme as well as its complexes with reactant by an excess

of the productP. It is noteworthy that many enzymes are d_S:A CAus— S (11)
inhibited by their reactants and products. For simplicity we dt "1 T2 (1+s+A89)(1+p)’

assume that rate constants in stéps-(7) are the same,

which is a reasonable assumption for allosteric inhibition by dp B.p s

the product. The produd® is consumed by another enzy- 9t P\~ m—32p+ (1+s+A8))(1+p) )’

matic reaction with the enzym&'’ producing inreactive (12)
productR [steps(8) and(9)] and moreoverP is transformed

directly to some produc® in step(10). This second enzy- \heres=[S]/K,, andp=K[P], are dimensionless concen-
matic reaction allows simplification of formulas for a trations of S and P, respectively, andr=(Ka[ Eo]/K )t is

nullcline for the product. _ _ dimensionless time. The parameters are defined as follows:
According to the mass action law, the behavior of thex —(k_,+ks)/k,, K' =(k_g+ky)/Ks, Ks=Ks/k_g5, A,
system is described by ten kinetic equationsSoP, E, SE, =ky[Sol/ks[Eo], Ay=KoK 1 /Ks[Ep]l, Ag=(ks/K_4)Ky, B

EP, SzE, SEP, SzEP, E/, andSE’, but it is easy to n,Otlce _ KmK5, Blzk7[E6]/k3[E0]K5, and82:k8/k3[E0]K5.
that E(t)+SF(t)+ EP(t) + S,E(1) + S,EP=E, and E'(t) ! If K/, is much smaller thap the termB,p/(K/,+p) can
+E'P(t)=Ey(t) are constant, so the system has two flrstbe replaced by, and the dynamics g is described by
integrals. Therefore one of the variablés:SE, EP, S;E,

SEP, or S,EP andE’ or SE' can be calculated if others are dp s

known and the dynamics of the system is described by eight Gt Bl ~Bi=Bap+ A+stASD (1D (13
kinetic equations only. Usually, total concentrations of the

enzymesE, as well asE are much smaller than the concen-  Nullclines fors andp are given by

S
P AT st A (A —As)

1, (14

—(By+By)+ (By+B;)2—4B,[B;—s/(1+5+A357)]
p: 1

|
respectively. ap p
These formulas allow for a selection of the parameters E_DpW:B —B1—Byp+ A+ st A (14 p))’
which gives one or three intersection points of the nullclines. (17)

Two intersection points correspond to a saddle-node bifurca-

tion. The intersection points correspond to stationary stateg here D, and D, are dimensionless diffusion coefficients

for the homogeneous system. andx is the dimensionless space coordinate. In the sequel we

~We assume that the reactiofl—(10) occur in an one-  consider the initial-boundary valu€auchy problem with

able to diffuse, whereas all other reagents are immobilized ifore subintervals of0,L], ands(0x)=s, and p(0x)=p,
an appropriate gel which also eliminates the natural convegor the complement of O,L], and the zero-flux boundary
tion. In this case the time-space behavior of the system igonditions atx=0 andx=L.

described by two kinetic equations in the form:

Ill. NUMERICAL RESULTS

&—S—D ‘9ZS:A CAus— S (16) We assume the following values for the parametévs:
gt Sox2 T T (14 s+ AgSH(1+p) =102, A,=10"%  A;=0.505, B=0.625, B,
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80

pulse, the initial conditiors;, should be higher than some
critical value and an excited subinterval&hould be suf-
ficiently large. For equal diffusion coefficients an evolution
of sufficiently large initial disturbance is similar as for excit-
able systems with one stable stationary state. The single trav-
eling impulse is formed and spreads through the system with
constant velocity without changing its shape, and disappears
at the boundaries. A completely different situation is ob-
served if the ratio of diffusion coefficients ,/Dg is suffi-
ciently large. An example of the evolution for the following
initial condition

60

w 40 A

20

s(0x)=s;, for xe[0J)] and s(0x)=s, for xe(l,L],
(21)

0 10 20 30 40 p(0x)=p;, for xe[0l] and p(0x)=p, for xe(l,L]
p (22)

FIG. 1. Nullclines fors (continuous ling¢ and forp (dotted ling (with <L) is shown in Fig 2. In the sequel we describe in
on the phase planep(s). The regions with different signs of the detail this evolution. The initial profile becomes continuous
vector fields forp ands are denoted by, B, C, D, E, andF. due to diffusion and the maximal value sfin disturbed

interval grows whereag decreases. The neighborhood posi-
=7.99x10 3, B,=4.65<10 °, D¢=10"5 and D,=5 tioned to the right of is subsequently excited and the front
X105, of excitation is formedsee Fig. 2a), continuous ling Si-

The nulicline for s on the phase planep(s) has an multaneously a local minimum of is formed before the
S-shape with three branches: the lower branch which is afront of excitation. Next, ak=0 and insidel s falls down
tracting, the repelling middle branch, and the attracting uppeand p grows [see Figs. @a) and 2d), long dashed lings
branch. The upper branch approaches asymptotically which follows in formation of the first impulsgsee Figs.

=A;/A, for p going to infinity. 2(a) and 2d), dashed linek This impulse is traveling to the
For these values of the parameters Ef$) and(13) have  right but its shape changgsompare dashed lines with dotted
three stationary states: lines in Figs. 2a) and Zd)]. When the impulse approaches a
vicinity of the right boundary it slows down and stops. In
§1=1.22754247, p,=40.5859278, (18)  sufficiently long systems the first impulse divides spontane-

ously creating new pulses behind it, as is shown in Fig¢s). 2
$=2.362912366, p;=38.144272305, (19 and 2e) and Zc) and 4f). New pulses do not divide them-
selves but their shapes evolve slowly approaching stationary
s =13.885593 25, p;;, =13.36431468. (200  distributions during long periods of tinfjsee Figs. &), 2(e),
2(c), and Zf)]. The division is stopped when the first impulse
The statd is a stable nodd| is a saddle point, whereas approaches the vicinity of the right boundary. In a spatially

[11 is an unstable focus. infinite system the division of the first impulse will be con-
The nullclines shown in Fig. 1 separate the phase planénued up to infinity.
(p,s) into six regions. In regiorA the kinetic term fors Of course, transient solutions depend on initial conditions

(s-component of vector fie)ds positive and the kinetic term which is a typical property for partial differential equations
for p (p-component of vector fie)dis negative. This means of the parabolic type, but in our model also asymptotic, sta-
that in this regions increases ang decreases in the homo- tionary solutions exhibit such dependence. This means that
geneous system. In regidhboth kinetic terms are negative different stationary structures may coexist in the same sys-
and the variables and p decrease. In regio@ the kinetic  tem. An example of such coexistence is shown in Figa) 3
term for s is negative and the kinetic term faris positive  and 3b), where only four among ten possible different pat-
which means thas decreases ang increases. In regio®  terns are shown. The pattern with two pulses inside and the
both components of the vector field are positive arahdp  half of the pulse at the left boundary and its symmetric re-
increase. In regiorkE both kinetic terms are negative and flection, and the pattern with one pulse inside and the half at
therefores as well asp decreases. In regio both compo- the right boundary as well as three patterns with two halves
nents of the vector field are positive asdis well asp in-  of the pulse at both boundaries are not shown in this figure.
crease. Any stationary periodical structure exists in some interval of
An evolution of the system strongly depends on a ratio ofL. At a minimal intervalL a pattern consists of some number
diffusion coefficients and on values of initial conditions. Of of pulses with single maximum for large values ®fand
course, if initial disturbance of the stable stationary state  small maximum at low values & If the size of the system
sufficiently small, then the system will evolve to homoge- grows the single maximum at largenitially increases but at
neous distributions af andp given by the staté. In orderto  some size it starts to decrease and with further growth iof
obtain nontrivial evolutions in the form of the traveling im- splits into two maxima and minimum between them. The
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50
40
= 30
@20
104}
0 4 FIG. 2. Spatiotemporal evolution of(t,x)
0 (a,b,0 and p(t,x) (d,e,h on the interval[0,10]
50 for the following initial conditions:s(0x)=20
for xe[0,0.1] and s(0x)=s, for xe(0.1,10;
40 1 p(0x)=35 for xe[0,0.1] and p(0x)=p,
for xe(0.1,1Q; and the boundary
%307 conditions 0/ 9%)|o= (351 9x)| 1= (Ipl IX)| o
%20_ =(dpl/ax)|;=0. (@ and (d): continuous lines,
t=12500; long dashed lines= 25 000; dashed
10 1 lines,t=50 000; and dotted lines= 150 000;(b)
and (e): continuous lines,t=235000; long
0 o dashed lines, t=275000; dashed lines,t
=350000; and dotted line$=412500.(c) and
50 (f): continuous linest=475000; long dashed
lines, t=557 500; dashed lines=625 000; and
40 - N dotted linest=2 500 000.
i
<30 f
= Fo
“ 20 f H
k
3
10 |
b
0 :
0
maximum at small values &f increases in the whole region Ymax=0.1895 L (24)

of L where the stationary structure exists.

It is easy to check that nonlinear, partial differential equa-and the maximal and minimal number of pulses in a station-
tions of the type considered here are symmetrical with reary periodical structure for a given are determined by
spect to reflections im. The consequence of this symmetry

and the zero-flux boundary conditions is that patterns con- Nmax=[0.6250 L ] nax (25
sisting of a given pattern and its reflections are also solutions
of the system provided the selected pattern is the solution. In Nmin=1[0.1895 L ] min (26)

Fig. 4 the dependence of numbers of pulses in stationary
periodical structures on size of the system is shown. Circlewhere the symbol$- |.« and[ - ], denote a nearest less
show minimal intervals on which a given pattern may exist,number and a nearest greater number of the typenlf@r

whereas triangles mark maximal intervals. These points li;¢y=0,1, . . . ,respectively.
along two straight lines, which is the consequence of the The stationary structures obtained in our model may con-
symmetry of the system. The lines are described by sist of integer pulses or have additionally a half of a pulse at
one or both boundaries. Therefore for a gikea number of
Ymin=0.6250L, (23)  coexisting stationary periodical structures is given by

FIG. 3. Examples of the stationary periodical
structures coexisting on the intervak=5: con-
tinuous lines, one pulse; long dashed lines, one
and a half pulse; dashed lines, two pulses; and
dotted lines; three pulses. The structure with two
and a half pulses existing on this interval is not
shown.
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FIG. 4. Dependence of numbers of pul_ses in stationary pe_ric_)di- FIG. 5. Projection ofp(t,x) ands(t,x) forming the stationary
cal structures on a sizg.) of the system. Circles denote the mini- traveling impulse on the phase plang,€) for equal diffusion co-

mal L on which patterns with a given number of pulses may exist.officients D,=D,=10"% Thick continuous line denotes the
Triangles mark the maximal on which patterns with a given num- nullcline fors thlck dotted line the nullcline fop.

ber of pulses may exist.

that stationary homogeneous solutias x) andp(t,x) cor-
respond to points onp(s), because in this particular case
there is no difference between the partial and the ordinary
equations. Solutions(t,x) andp(t,x) in the form of a sta-
tionary traveling impulse, which spreads in infinite system
(initial value problem, give on the phase plangs) an
invariant curve which starts and ends at the stable stationary
In the theory of ordinary differential equations a projec-statel. Sufficiently far from the front of the impulse and
tion of states of a system on its phase space is a fundamentséhind the back of its(t,x) andp(t,x) are very close to the
tool [59]. In the phase space solutions of the system aretable stationary state The solution in the form of the sta-
represented by trajectories in which exact information aboutionary traveling impulse is obtained for Eq4.6) and (17)
time dependence of the solutions is lost. in the case of equal diffusion coefficients. In this case the
States of a system described by partial differential equacurve crosses in  turn the following regions:
tions of the parabolic type may by analyzed in similar way,C, E, A, B, C, andD (see Fig. 5. For finite systems the
but in this case the phase space corresponds to continuogl®sed curve is only an approximation which is reasonable, if
distributions in space of the variables and has infinite unthe front and the back of the impulse are far from boundaries
countable dimension. Therefore such an approach is practpf a system. It is noteworthy that the same sequence of
cally unprofitable. However, some qualitative information crossed regions, excluding the regicd@sandE, is obtained
may be extracted from the projection of solutions to the parin the homogeneous system for a trajectory starting from the
tial differential equations on the phase space for ordinaryegion A above the middle branch of the nulicline far
differential equations in which diffusion terms are omitted. |If the ratio of the diffusion coefficients is sufficiently
In this approach, exact information about the dependence dhrge, then the impulse changes its shape when traveling, and
variables on space and time is lost, but changes in shapes i projection on the phase plang,§) will be a curve, but its
obtained projections allows one to explain and predict qualicontour will change. The qualitative analysis described be-
tative properties of spatiotemporal evolution of the systemjow allows us to determine the form of the projection which
In the sequel we will use this approach in the qualitativecorresponds to asymptotic solutions of the E(6) and
analysis of solutions(t,x) andp(t,x) to Egs.(16) and(17)  (17). Our analysis of the solutions to Eg4.6) and (17) is
by projections of them on the phase plares). For the  based on estimations of reaction and diffusion terms at ex-
ordinary differential equation§l1) and (13) a state of the treme values op ands and in their close neighborhoods. We
system is identified with a point in the phase plapes]. In will concentrate our analysis on the evolution of projections
our approach a projection of the solutios($,x) andp(t,x) for the initial conditions(21) and (22).
to the partial differential equatiori46) and(17) corresponds In the initial interval of time the front of the impulse is
to a curve in the phase plang,§). A solution to Eqs(11)  formed (see Fig. 6, continuous lineand projections of the
and(13) gives a phase trajectory, which is the curve on theprofiles of s(t,x) and p(t,x) on the phase plane form the
phase planefs), whereas an evolution described by Egs.curve which starts at the stable stationary staex=L (the
(16) and (17) gives continuous transformations of a given right tip), where s has initially its local minimum and
curve into other curves on the same plane. Let us mentioreaches maximum, and ends at the maximum valugaofd

N=2[2(Nmin—Nmay +1]. (27)

This number strongly increases with

IV. QUALITATIVE ANALYSIS
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FIG. 6. Projections ofp(t,x) and s(t,x) on the phase plane FIG. 7. Continuation of the projection’s evolution shown in Fig.
(p,s) at selected times showing the formation of the first impulseG- The evolution of the projections to stationary one pulse structure
on the interval with_ = 3. Continuous linet= 14 000; long dashed is shown for the following times: continuous lines50 000; long
line, t=19 000; dashed lind,=33 000; and dotted line,=44000. ~ dashed linef=60000; dashed line,=68 000; and dotted line,
Inset shows the formation of a minimum sft,x) before the front =1 500000. Inset shows the decreasepait x=L in time. Con-
of the first impulse. Long dashed lines 500 and short dashed line, tinuous line with open circlest=50000; long dashed line with

t=2000. Thick continuous line denotes the nullcline fprthick ~ open squares,= 60 000; and dotted line with stars=1 500 000.
dotted line the nulicline for p. The left most symbols denote valuesmét x=L. The increase of

values ofp at x=0 for the same times is shown by the same solid
symbols. Thick continuous line denotes the nulicline $pithick

the minimum value ofp at x=0 (the left tip. Due to the dotted line the nullcline for p.

conditionD,> Dy, the piece of the curve starting at the right
tip, which lies between the lower and the middle branches of

the nullcline fors, is shifted to left, as compared with the ing a local maximum which is accompanied by a change of
equal diffusion coefficients case, and is pushed out from th#éhe sign of its diffusion term from positive to negatiygee
region E to the region<C andF, because the negative value Fig. 6, dashed line At the left tip s(t,0) falls down close to

of the diffusion term forp prevails over its kinetic term. a vicinity of the lower branch of the nulicline f& and si-
Moreover, becausgis a faster variable as compared with ~ multaneouslyp(t,0) continues its growth. In this way the
the negative kinetic term fag prevails over its positive dif- back of the impulse is formed. The left tip shifts itself inside
fusion term and the piece of the curve is shifted down closghe regionC very close to the lower branch of the nullcline
to the lower branch of the nulicline far(see the inset in Fig. for s and tends slowly to the stable stationary staecause
6). In this way a small local minimum afbefore the front of  the diffusion term is to small to stop the increasgoin this

the impulse is formed. The whole projection appears to be invay the first impulse is created in the form of a loop con-
regionsC, F, andA. The left tip of this curve is in the region sisting of the front(the part of the projection positioned to
A where the kinetic term fos is positive, but its diffusion the right from the maximum fos) and the back'the part
term is negative and the kinetic term fgr is negative, positioned to the left from the maximum fg) (see Fig. 6,
whereas its diffusion term is positive. In this interval of time dotted ling. Simultaneously, in regioB on the piece of the
both kinetic terms at the left tip prevail over the diffusion back positioned between the nuliclines a local minimurp of
terms and in consequence, the left tip moves upwards and formed. The diffusion term fop is positive and prevails
left on the phase plane. At some moment of time the left tipover the kinetic term. Therefore this piece of the projection is
approaches the nulicline faer After crossing of this nullcline  shifted to the right and next pushed out from regBrio

the tip appears to be in regi@dwhere both kinetic terms are regionsA andF (compare the dotted line in Fig. 6 with the
negative. The negative kinetic term feiis amplified by the continuous line in Fig. ¥ The projection of the impulse
negative diffusion term and at the left tip decreases more extends from the right tipX{=_L) which is close to the stable
quickly than in its surroundings. In consequence, at somstationary staté and goes througle, F to the maximum o
moment of time instead of the local maximum &t x=0 positioned inA (the front of the impulseand from the maxi-
the local minimum ofs is formed (see Fig. 6, long dashed mum of s throughA, F, andC, and ends at the left tipx(
line). The diffusion term fois changes its sign from negative =0) (the back of the impulgeFurther evolution depends on
to positive but its value is to small to stop the decreasing othe size of the systerftompare Fig. 7 with Figs. 8 and.af
s(t,0). The minimum ofs becomes deeper and at some timethe size is smalll{~3), then the small minimum «f before
the tip crosses the nulicline fop. After crossing this the front of the impulse attains a close neighborhood of the
nullcline the left tip appears to be in regidd where the right boundary. Ax=L the second derivative gf(t,x) with
kinetic term forp is positive, sop(t,0) starts to grow form- respect tox is negative and decreases while the front ap-
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from the stable stationary statealong the lower branch of
the nullcline fors (see the inset in Fig.)7This displacement
causes a threshold for excitation of the system from the state
| that increases, and if the displacement is sufficiently large,
then the front stops to move to the right. Next, slow changes
of the whole projection occur. During this slow evolution the
competition between diffusion and kinetic terms causes the
loop formed by the front and the back of the impulse to
become more and more narrow. Changes of the front and the
back in regionsA and C play an important role in this evo-
lution. The narrowing of the loop may be explained in the
following way.

For the part of the projection positioned in the regidn
the kinetic terms fop for the front and the back are negative.
The kinetic term for the front is more negative than for the
back, because a part of the projection corresponding to the
back is closer to the nullcline fgrthan a part corresponding

FIG. 8. Projections ofp(t,x) and s(t,x) on the phase plane to the front. Moreover, the diffusion term fqr attains its
(p,s) at selected times showing the division of the first impulse onpositive maximum at the minimum @f which is positioned
the interval withL=6. Previous evolution is very similar to that in the back. Therefore at the minimum pfnd around it the
shown in Fig. 6. Continuous ling=54 000; long dashed ling,  Kkinetic and the diffusion terms fqu can compensate them-
=160000; dashed line,=254000; and dotted ling,=260000. selves much more exactly than in the front. The positive
The formation of the nose and its tip, as well as the pulse behind thdiffusion term forp can prevail over the negative kinetic
first impulse is clearly seen. Thick continuous line denotes theerm in the back, whereas the opposite condition is fulfilled
nullcline for s, thick dotted line the nulicline for p. in the front. Simultaneously, the kinetic and diffusion terms

for sinfluence the part of the front and the back positioned in
proaches the right boundary. In consequerngi,L) de- A The positive kinetic terms fos attempt to shift the front
creases because the kinetic term for it is very small here angs well as the back upwards but this movement is restrained
the diffusion term prevails on itsee the inset in Fig.)7  py the negative diffusion term around the maximumsof
Simultaneously, the second derivativesgf,x) atx=L be-  The diffusion term along the back has smaller absolute value
comes more negative while the front approackes.. In  than along the front and therefore a distance between them in
consequence, the small local maximums(f,L) decreases. thes direction decreases. At the maximumsathe diffusion
This corresponds to a displacement of the right tip awayerm decreases and compensates the kinetic term more and
more exactly. In consequence, the compensation of the ki-
netic terms with the diffusion terms for both variables leads
to the joining of the front and the back.

In region C the kinetic term forp is positive and suffi-
ciently large to prevail over the diffusion term along the back
and the negative kinetic term faris to small to compensate
the positive diffusion term and therefore the projection of the
back moves right and upwards. The front is positioned in a
weaker vector field fop than the back. Let us mention that
p(t,x) at x=L remains closer t@, than atx=0 (see the
inset in Fig. 7 and the minimum op is positioned around
the center of the system. Therefore at the front the diffusion
term for p is more negative than at the back. The negative
diffusion term prevails over the positive kinetic term and
therefore the front moves to the left. On the other hand the
diffusion term fors is positive but is to small to compensate
the negative kinetic term. Therefore the projection of the

P front moves left and downwards and the distance between

FIG. 9. The same as in Fig. 8 but here the evolution of the firslIhe front .and the ba_ck decreases and th.ey' joint themselves
impulse and the new pulse to asymptotic projection is shown for th&Symptotically. In this way the loop consisting of the front
following times: continuous linet=270000; long dashed line, ~ @nd the back shrinks to “single curve” and the asymptotic
=280 000: dashed ling=340000: and dotted line=2 000000. distributions of both variables become symmetric with re-
Inset shows the details of the projections. The drift of the firstSPeCt to the spatial center of the system.
impulse and the new pulse to the stationary structure is seen. Thick If the size of the system is sufficiently largé 46 and
continuous line denotes the nullcline for s, thick dotted line thelarger, see Fig. ¥ then the evolution is very similar to that
nullcline for p. presented in Fig. 6 and does not stop on the stationary first
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impulse(Fig. 7) but continues in a different waigee Fig. 8  mum of p moves upwards too, because the positive kinetic
In such a case, the first impulse continues its traveling to théerm for s prevails over the negative diffusion term fer
right boundary and the most important changes occur in thécompare the dotted line in Fig. 8 with the continuous line in
part of the projection positioned around the maximal value ofFig. 9).
s and the minimal value op. This part is in the regiom, During further evolution both parts the pulse as well as
where the vector field is positive farand negative fop and  the front and the back of the first impulse move upwards and
the diffusion terms are negative and positive, respectivelyapproach each other, because the left parts of them remain in
The maximum ofs starts to grow shifting this part of the the weaker vector field fgo than the right partésee Fig. 9.
curve to the region with a stronger field fpricompare con- The pieces close to the maximumssénd the minimum op
tinuous lines in Figs. 7 and 8The kinetic term fop prevails move to the left because they are shifted to the stronger
over the diffusion term and in consequence a minimurp of vector field forp, where the kinetic term prevails over the
in the back moves up and left, and at some moment has tdiffusion term. The diffusion terms compensate the kinetic
cross the nullcline fos. After crossing the nulicline, a down terms more and more accurately and asymptotically both
oriented nose with the tip is formddee Fig. 8, long dashed parts of the pulse join. The evolution of the pulse is similar
line). Formation of the tip of the nose corresponds to theto the evolution of the first impulse shown in Fig. 7. Simul-
appearance of the local minimum efsurrounded by two taneously, the projection of the front of the first impulse joins
local maxima. The diffusion term fog becomes positive at with its back and the loop corresponding to them joins with
the tip of the nose, but is to small to compensate the negativihe loop for the pulse forming the “single” curve.
vector direction field fors and the tip of the nose moves If a size of the system is larger, then after the formation of
down away from the nullcline fos approaching the nulicline one pulse the evolution of the projection of the first impulse
for p at some moment of time. From this momeruat the tip  repeats the scenario described above and next the division of
of the nose starts to grow forming its local maximuysee the first impulse may occur provided there is enough place in
Fig. 8, dashed line but s decreases very quickly because of x before it(see Fig. 2 In this way subsequent new pulses
the very strong vector field for it and approaches values closeay be generated in the system due to the division of the
to the lower branch of the nulicline fax The tip of the nose first impulse. If the first impulse attains the right boundary
moves in regiorC along the lower branch of the nullcline for then it stops, because the threshold for excitation from the
s towards the stable stationary stdteand the nose itself stable stationary stateincreases. As it is explained above
becomes very narrow. In this way the division of the firstthe increasing of the threshold is caused by the shift of the
impulse occurs and a new pulse is formed behindee the right tip away from the statéalong the lower branch of the
dotted line in Fig. 8 The curve in the form of two loops is nullcline fors. After stopping, the first impulse evolves simi-
formed on the phase plane. The higher part of the wholdarly to the pulses generated behind it and the piece of the
projection corresponds to the first impulse, whereas therojection of it attains the projections of the previous pulses.
lower one corresponds to the newly created pulse. The firsthe tips of subsequent noses as well as the left tip corre-
impulse consists of the front and the back and continues itsponding tox=0 asymptotically attain the right tip and a
traveling to the right boundary. The front of it starts at the stationary periodical structure is formed. Any stationary pe-
right tip of the whole projectiorat x=_L) and ends at the riodical structure has the projection in the form of a single
maximum value o whereas the back starts at the maximumcurve along which the profiles af and p are distributed a
value ofs and ends at the tip of the nose. The newly createdjiven number of times corresponding to a number of spatial
pulse does not change much its positioniThe part of the periods composing the structure. This form of the projection
distribution in x positioned to the right from its maximum on the phase plane differs substantially from the projection
value ofs corresponds to the left part of the projection on theof the stationary traveling impulse observed at equal diffu-
phase planeq,s) starting from the tip of the nose and end- sion coefficients as well as from the projection of asymptotic
ing at the maximum o&. The part of the profile irx posi-  oscillatory solutions to the ordinary differential equations,
tioned to the left from the local maximum efcorresponds to  which are represented by closed curves.
the right part of the projection, which starts at its maximum  The above analysis concerns initial conditions with distur-
of sand ends at the left tifat x=0) of the whole projection. bances of a small interval ofat the left boundary. For other
While the division of the first impulse develops, first the initial conditions a spatiotemporal evolution is essentially the
left part of the projection of the pulse is pushed out fromsame. If the system is excited in some number of intervals of
region B, because in this region the diffusion term fois X, which are sufficiently separated, then excitations spread to
positive and prevails over the negative kinetic term. Nextboth sides of disturbed intervals forming fronts. These fronts
the projection of the back of the first impulse is also pushedf excitation stop before they meet due to the same reasons
out from regionB for the same reasofsee Fig. 8, dotted as the front of the first impulse stops at the right boundary.
line). In the piece of the projection of the pulse around theBehind the fronts the backs of impulses are formed. If there
maximum ofs and the minimum of the positive diffusion is enough space ir, then each impulse leaves noses behind
term for p is sufficiently large to shift this piece to the right. it according to the scenario described above for the first im-
Simultaneously, this piece moves upwards, because thaulse. If initial conditions generate stationary periodical
negative diffusion term fois is unable to compensate the structures with half of the pulse at the right or the left bound-
positive kinetic term. The piece of the projection of the firstary or at both of them, then in the evolution its part corre-
impulse positioned around the maximumséand the mini-  sponding to the formation of the last nose is omitted. Instead
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FIG. 10. Projections op(t,x) ands(t,x) on the phase plane FIG. 11. Changes of the minimal valuespénd extreme values

(p,s) for all stationary periodical structures coexisting on the inter-Of S fOr various sizes of the system. The left most and lowest sym-
val L=5. One pulse structures, continuous line; one and a haIPOI corresponds to all structures existing on maximal intervals of

pulse structures, long dashed line; two pulses structures, dashg@ereas the right most one denotes all structures existing on the

line: two and a half pulses structures, short dashed line and thre@inimal intervals ofx. Thick continuous line denotes the nulicline
pulses structures, dotted line. Thick continuous line denotes thfP" S thick dotted line the nulicline fop.

nulicline for s, thick dotted line the nullcline fqp. pulse the symbol denotes the maximum valuepaind the
maximum value of situated in a range of small values of
Sfor a given size of the system. These points lie very close to

¢ , iodical the nullcline fors, which means that diffusion terms feiare
Some number of stationary periodical structures may COi/ery close but not equal to zero. The right most point corre-

exist for a given size of the system. Their projections on the,,nds 1o all structures existing on the maximal intervals of

phase planeg,s) for L=5 are shown in Fig. 10. Each pro- "\, hereas the left most one represents all structures existing
jection starts at the right tip positioned in regiGrvery close ., the minimal intervals of.

to the lower branch of the nullcline fa& in some distance

at the minimal value op and maximal values dd.

from the statd, goes through the minimum value efand V. DISCUSSION
next leaves regiorC, crosses the regiok, and next goes _ o
through regiom reaching the maximum value sf(see Fig. In our model the stationary periodical structures appear

10, dotted, short dashed, dashed, and long dashed kimes due to two main effects: the division of the traveling impulse
eventually ends in regioB reaching the local minimum of
positioned between two the maxinigee Fig. 10, continuous
line). The stationary projections form a one parameter family
of curves on the phase plang,§). In cases when a given 0.45
structure exists at the maximal intervalothe projection of ]
it cannot be described as a functies p(s) or adverse one

0.50

0.40

and therefore the whole family cannot be described by a
simple formula. o
There exists a well-defined range in the phase plans) ( 0.35

which is occupied by all stationary structures. In this range
the kinetic terms are exactly compensated by the diffusion ]
terms. This range may be characterized by the minimal anc  ©0.30
maximal values op for a given size of the system. In Fig. 11 ]
the circles denote the minimal values paind extreme val-
ues ofs. All symbols situated to the right of the nullcline for
s correspond to the maximum values fwhereas the sym-
bols to the left of this nullcline correspond to the minimal
values ofs lying between two maxima of. The left most FIG. 12. Changes of the maximal values pfand maximal

and lowest symbol corresponds to all structures existing Ojajues ofs for various sizes of the system. The right most symbol
maximal intervals ofx, whereas the most right one denotescorresponds to all structures existing on the maximal intervais of

all structures existing on the minimal intervalsfin Fig.  whereas the left most one represents all structures existing on the
12 the stars denote the valuespodinds at the boundaries, if minimal intervals ofx. Thick continuous line denotes the nullcline
structures consist of integer pulses. For structures with a hafbr s, thick dotted line the nulicline fop.

19 21 23 25 27 29 31
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and the stopping of its front at the boundary or at the meeting The coexistence of small amplitude stationary periodical
of two fronts spreading in opposite directions. Similar effectsstructures has been found close to the Turing instathig}.

have been observed in other models of stationary periodicé&patial multistabilty of other patterns has also been discussed
structures but they were caused by bifurcations from excitfor a two-variable reaction diffusion modg63,64], but to

able to trigger regimes in a two-variable subsystem coneur best knowledge, our model is the first example of the
trolled by spatial distribution of the third variab[d4,60. coexistence of the large amplitude stationary periodical
The division of the traveling impulse in the present model isstructures in one-dimensional systems. A number of coexist-
caused by the fact that the diffusion term fois sufficiently  ing structures may be as large as one wishes, if the size of the
large to shift a part of the projection pfands on the phase system is sufficiently large. One can expect that in more
plane (@,s) from regionA, where the kinetic term fosis  dimensional systems different initial conditions may gener-
positive to regiorB, where this kinetic term is negative and ate a very rich variety of observed patterns. The dependence
sufficiently large to generate the nose which approaches af asymptotic patterns on initial conditions leading to their
vicinity of the lower branch of the nulicline fas. The stop- coexistence may also be helpful in the explanation of the
ping of the front is caused by the fact that the diffusion termdiversity of patterns observed in physical systems like semi-
for p is sufficiently large to shift part of the projection pf  conductorg65] and premixed flamef66—-69, which seem
ands away from the stable stationary stdtén such a way to be very important to biological systerfg9].

that the distance from it to the middle part of the nullcline for  The chemical schemé&l)—(10) is realistic because it is

s increases what stops the spreading of excitatios. dhe  based on elementary monomolecular or bimolecular reac-
analysis presented above allows one to explain in a qualitaions excluding autocatalysis. The scheme contains some
tive way the results obtained in numerical calculations byhints to look for such as kinetics in real chemical systems. It
showing whether reaction or diffusion terms prevail locally is well-known that many enzymes are inhibited by their re-
in Egs.(16) and(17) what governs increasing or decreasingactants and products and therefore our model in two and/or
of the variables. The approach used in our analysis seems tbree spatial dimensions seems to be helpful in the explana-
be fruitful and may be applied to a qualitative analysis oftion of pattern formation in biological systems.

other models. However, the analysis will be much more dif- We believe that analogical evolutions may be observed in
ficult for more than two variable models like the Oregonatora two-variable generic system with similar shapes of the
[61] or the four-variable model for the FIS reactif®d], in nuliclines, in which the kinetic terms are replaced by cubic
which a large amplitude stationary structure as well as othepolynomial in the equation fas and linear terms in the equa-
patterns have been found in numerical calculations. tion for p.
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